Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant.

نویسندگان

  • Morgan Chabanon
  • Padmini Rangamani
چکیده

We establish a biophysical model for the dynamics of lipid vesicles exposed to surfactants. The solubilization of the lipid membrane due to the insertion of surfactant molecules induces a reduction of membrane surface area at almost constant vesicle volume. This results in a rate-dependent increase of membrane tension and leads to the opening of a micron-sized pore. We show that solubilization kinetics due to surfactants can determine the regime of pore dynamics: either the pores open and reseal within a second (short-lived pore), or the pore stays open up to a few minutes (long-lived pore). First, we validate our model with previously published experimental measurements of pore dynamics. Then, we investigate how the solubilization kinetics and membrane properties affect the dynamics of the pore and construct a phase diagram for short and long-lived pores. Finally, we examine the dynamics of sequential pore openings and show that cyclic short-lived pores occur with a period inversely proportional to the solubilization rate. By deriving a theoretical expression for the cycle period, we provide an analytical tool to estimate the solubilization rate of lipid vesicles by surfactants. Our findings shed light on some fundamental biophysical mechanisms that allow simple cell-like structures to sustain their integrity against environmental stresses, and have the potential to aid the design of vesicle-based drug delivery systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane solubilization by detergent: resistance conferred by thickness.

The commonly held model for membrane dissolution by detergents/surfactants requires lipid transport from the inner to the outer bilayer leaflet ('flip-flop'). Although applicable to many systems, it fails in cases where cross-bilayer transport of membrane components is suppressed. In this paper we investigate the mechanism for surfactant-induced solubilization of polymeric bilayers. To that end...

متن کامل

Structural phase transitions involved in the interaction of phospholipid bilayers with octyl glucoside.

The transitional stages induced by the interaction of the nonionic surfactant octyl glucoside (OcOse) on phosphatidylcholine liposomes were studied by means of transmission electron microscopy (TEM), light scattering and permeability changes. A linear correlation was observed between the effective surfactant/lipid molar ratio (Re; three-stage model proposed for liposome solubilization) and the ...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100.

The structural transition stages induced by the interaction of the non-ionic surfactant Triton X-100 on phosphatidylcholine unilamellar vesicles were studied by means of static and dynamic light-scattering, transmission-electron-microscopy (t.e.m.) and permeability changes. A linear correlation was observed between the effective surfactant/lipid molar ratios (Re) ('three-stage' model proposed f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره   شماره 

صفحات  -

تاریخ انتشار 2018